
COMPSCI 732
Software Tools and Techniques

Lecture 1: Advanced topics in
Aspect Oriented Development

Lecturer:
Dr SANTOKH SINGH

Contact Details

Email: santokh@cs.auckland.ac.nz
Office: RM 488, Level 4, new CS building
Phone: ext 82283
Office Hours: Monday(11am - 12pm) or see me
anytime mutually convenient.

COMPSCI 732 – SANTOKH SINGH

mailto:santokh@cs.auckland.ac.nz

Overall Lectures Description

Lecture 1: Aspects and AOP
Lecture 2: Aspect Oriented Systems and Components
Lecture 3: Support Tools
Lecture 4: Aspect Oriented Software Development

across the Software Development Lifecycle &
Review

COMPSCI 732 – SANTOKH SINGH

Aspects

Figure 1: Aspects crosscutting classes in a figure editor

Aspects
Gregor Kiczales and his research group at Xerox PARC conceived the
idea of using aspects in Aspect-Oriented Programming (AOP) to address
cross-cutting issues that were spread out in the designs and
implementation code of software systems.
These cross-cutting issues “mangled” the system’s functionalities making
them hard to understand, modify and control.
In some cases, ultimately, remaining as redundant code because no one
wants to delete, edit or to have anything to do with it because
understanding and dealing with it might take up too much time and
resources.
Neither procedural nor object-oriented programming techniques are
sufficient to clearly capture these cross-cutting issues in software designs
and implementations and neither of these programming techniques can
be used to address cross-cutting issues.
Concerns are said to crosscut if the methods related to those concerns
intersect. AOP deals with crosscutting concerns and their descriptions,
designs and implementations.

Aspects

As an illustration for understanding more about aspects, we
consider a UML diagram for a simple figure editor, as depicted in
figure 1, in which there are two concrete classes called the Point
and Line classes of the FigureElement super class

These classes manifest good modularity, in that the source code in
each class is closely related and each class has a clear and well-
defined interface. But consider the concern that the screen
manager should be notified whenever a figure element moves.

Every method that moves a figure element requires notification to
get the display updated (DisplayUpdating).

Aspects
The red box in figure 1 is drawn around every method that must implement this
DisplayUpdating concern, just as the Point and Line boxes are drawn around
every method that implements this cross-cutting concern.

Notice that the box for DisplayUpdating behaviour fits neither inside of nor
around the other boxes in the figure, instead it cuts across the other boxes. This
is why we call it a crosscutting concern. The bigger the application, the more
pronounced and cluttered the cross-cutting issues become.

Using just Object Oriented programming, the implementation of crosscutting
concerns tends to be scattered throughout across the system, just as it is shown
in the figure above. But by using the mechanisms of AOP, the implementation of
the DisplayUpdating behaviour can be captured and modularised into a single
aspect.

Since we can implement this behaviour in a single modular unit, it makes it
easier for us to think about it as a single design unit. In this way, having the
programming language mechanisms of aspects lets us think in terms of aspects
at the design level as well.

Aspects and AOP
These cross cutting issues are called aspects, and other terms like
tangling, intermingling, mangling and interleaving units have also been
used to describe them.

A better description of aspects is attributed to Gregor Kiczales where he
states that an aspect is a modular unit that cross cuts the structure of
other modular units and that it can encapsulate state, behaviour and
behaviour enhancements in other units.

The goal of AOP is to make designs and code more modular, meaning
the concerns are more localized using AOP rather than scattered, and
have well-defined interfaces with the rest of the system.

AOP provides us with the benefits of modularity, including making it
possible to reason about different concerns in relative isolation, making
them pluggable and amenable to separate parallel development during
the software development process.

Aspects and AOP

There are two types of aspects, design aspects and program (or code) aspects. Modular
units of design that cross-cut the structure of other parts of the design are called design
aspects. Similarly modular units of programs that cross-cut other modular units of
programs are called aspects. Both these types of aspects give rise to cross-cutting
issues in designs and implementations.

The AOP methodology formulated techniques to solve cross-cutting issues and these
include isolation of aspects, reuse of aspect code and composition of aspects from the
onset. AOP also uses an approach which is called code weaving to tackle cross-cutting
issues in programs. This technique is carried out by composing the aspects properly,
identifying the regions where the aspects appear and weaving the aspects into the
regions so as to produce the desired results.

AOP also clearly distinguishes components from aspects. In this methodology, a
component can be cleanly encapsulated in a generalised procedure. Furthermore
components tend to be units of the systems functional decompositions. For instance, in a
collaborative travel planner system, the booking and system customer are both
components because they can be both cleanly encapsulated in a generalised procedure
and are units of the systems functional decomposition.

Aspects and AOP
A very popular AOP technology is AspectJ. (We WILL use this in our assignment).
AspectJ is actually an aspect-oriented extension to the Java programming language and
the Xerox PARC group's work is now integrated into the currently popular Eclipse Java
IDE.
There are 3 basic constructs in AspectJ, i.e. the join points, pointcuts and advice. The
joint points are the points where the crosscutting occurs, a pointcut defines a set of
execution points for the joint points and the advice represents what to do in the cross-
cutting area.
Other commercial Aspect-oriented frameworks include JBoss, AspectWerkz and Spring
AOP. All these have also helped popularise AspectJ that has become one of the most
widely-used aspect-oriented languages to address cross-cutting issues. AOP techniques
have been used in other languages and platforms as well.
AOP has been applied to metadata and their interceptors in the Aspect Builder
application, where services between clients and other objects were stacked semi-
seamlessly in COM and seamlessly in .NET.
Microsoft has also announced that it has been developing a state-of-the-art aspect-
oriented programming tool called Aspect.NET which can be integrated with the latest
Visual Studio IDE. In this project Microsoft aims to make AOP ubiquitous for .NET
software engineers, develop the most adequate ways of representing aspects and lay
the foundation for future research and development work on spreading AOP among
.NET users.
The Aspect-Oriented Programming methodology together with ideas from its vast
research carried out so far has contributed immensely to our understanding of these
cross-cutting modular units called aspects in design and implementation. They have also
helped software developers gain a better understanding in separating components from
aspects.

Homework – please do!

Read up more about the concepts associated with
the following terms in AspectJ:
– Join point: well defined points in the execution
of a program.
– Pointcut: collection of join points.
– Advice: a construct indicating code that
should run at each join point in a pointcut. What are the

different types of Advice?
– Aspect: program units encapsulating an
implementation of a cross cutting property.

A Few Points to Remember

The AOP mechanism let us write an aspect as a
separate, localized, modular piece of code.

So we can think about them as separate units. For
hard-core software designers/coders: we can think of
each aspect as being in its own box.

AOP is NOT a replacement for Object-Oriented
Programming (OOP) – AOP builds on OOP to
provide techniques for solving problems for which
OOP is insufficient.

	COMPSCI 732�Software Tools and Techniques
	Contact Details
	Overall Lectures Description
	Aspects
	Aspects
	Aspects
	Aspects
	Aspects and AOP
	Aspects and AOP
	Aspects and AOP
	Homework – please do!
	A Few Points to Remember

